DRAFT Striped Bass (*Morone saxatilis*) Thermal Tolerance Analyses – Juvenile and Adult, Summer

March 2016

Introduction

Recommended summer chronic and acute thermal tolerance values for juvenile and adult striped bass and their justification are discussed below. The recommended tolerance values were developed in accordance with the "DRAFT Methodology for Developing Thermal Tolerance Thresholds for Various Fish in Nevada – Juvenile and Adult, Summer" (September 2015).

Chronic Thermal Tolerance Thresholds

Table 1 provides a summary of the range of chronic temperature tolerance values for striped bass for various lines of evidence. These values are based upon a review of 7 papers and publications, the details of which are summarized in Attachment A.

There is obviously a wide range of temperatures from which to select an appropriate value and best professional judgment is called for. NDEP's approach is to accept the EPA recommendations from Brungs and Jones (1977) unless the literature review provides a compelling reason to utilize other values. However, in the case of striped bass, EPA did not recommend a chronic thermal threshold. As discussed in the methodology, chronic temperature criteria are generally not set to ensure the most optimum conditions. In fact, Brungs and Jones (1977) recommends chronic criterion for a given fish species that is between the optimum temperature and the UUILT. Therefore, NDEP recommends a chronic value of 30°C which is within the upper range of the tolerances taken from the literature.

Table 1. Summary of Chronic Temperature Tolerances

Category	Temperature (°C)
Laboratory Optimal Growth Studies – Constant Temperature	
Optimum	25 – 28.5
Upper Optimum	28 – 31
Laboratory Temperature Preference Studies	
Average Preferences	22.1 – 27
Upper Preferences	24.1 – 33
Laboratory Upper Temperature Avoidance Studies	26.4 - 28.3
Temperature Preference Field Studies	8 – 31
Thresholds from Colorado (MWAT)	29.6
Recommended Chronic Temperature Tolerance (MWAT)	30

Acute Thermal Tolerance Thresholds

Table 2 provides a summary of the range of acute temperature tolerance values for striped bass for various lines of evidence. These values are based upon a review of 2 papers and publications, the details of which are summarized in Attachment B.

For ease of presentation, the UILT and CTM values have been summarized by acclimation temperature ranges. However, as discussed in the methodology document, only the UILT and CTM values for acclimation temperature near the recommended chronic criterion (30°C) are to be included in the acute criterion development process. For striped bass, UILT and CTM values for acclimation temperatures of 25 - 30°C are utilized for criterion development.

Table 2. Summary of Acute Temperature Tolerances

Category	Temperature Tolerances (°C)	Potential Acute Criteria (°C)
Laboratory Lethal Studies – UILT/UUILT	` '	, ,
UILT		
Acclim. = 5 - 10°C	24.4 - 27.2	
Acclim. = 10 - 15°C	27.2 – 29.7	
Acclim. = 15 - 20°C	28.5 – 31.1	
Acclim. = 20 - 25°C	30.6 – 31.2	
Acclim. = 25 - 30°C	$31.8 - 33.9^{1}$	29.8 – 31.9
Laboratory Lethal Studies – CTM		
Acclim. = 5 - 10°C	27.4 – 31.6	
Acclim. = 10 - 15°C	29.5 - 32.7	
Acclim. = 15 - 20°C	31.6 – 34.7	
Acclim. = 20 - 25°C	33.7 – 34.7	
Acclim. = $25 - 30^{\circ}$ C	$36.2 - 38.8^2$	30.8 - 33.4
Recommended Acute Temperature Tolerance (MDMT)	3	2

¹UILT and UUILT values reduced by 2°C to provide 100% survival (See *Methodology*)

A review of laboratory studies suggests that an appropriate acute criterion should fall between 29.8 and 33.4°C. NDEP's approach is to accept the EPA recommendations from Brungs and Jones (1977) unless the literature review provides a compelling reason to utilize another value. However, in the case of striped bass, EPA did not recommend an acute thermal threshold for striped bass. Based upon the available information, NDEP concluded that an acute thermal tolerance value of 32°C is appropriate. This value is within the range of values found in the literature and is slightly higher than the chronic threshold of 30°C.

²CTM values reduced by 3.4°C to estimate quasi-UILT values. Quasi-UILT values then reduced by 2°C to provide 100% survival (See *Methodology*)

References

Bettoli, P.W. 2005. The fundamental thermal niche of adult landlocked striped bass. Trans. Amer. Fish. Soc. 134:305-314.

Brungs, W.A. and B.R. Jones. 1977. Temperature Criteria for Freshwater Fish: Protocol and Procedures. EPA-600/3-77-061. Environmental Research Laboratory, Duluth, Minnesota.

Colorado Water Quality Control Division. 2007. Colorado temperature database.

Cook A.M., J. Duston, and R.G. Bradford. 2006. Thermal tolerance of a northern population of striped bass Morone saxatilis. Journal of Fish Biology 69(5):1482-1490.

Coutant, C.C. and D.S. Carroll. 1980. Temperatures occupied by ten ultrasonic-tagged striped bass in freshwater lakes. Transactions of the American Fisheries Society 109:195-202 cited in Waddle, H.R., C.C. Coutant, and J.L. Wilson. 1980. Summer habitat selection by striped bass, Morone saxatilis, in Cherokee Reservoir, Tennessee, 1977. Oak Ridge National Laboratory, ORNL/TM-6927, Oak Ridge, Tennessee.

Coutant, C.C., K.L. Zachman, D.K. Cox, and D.L. Pearman. 1984. Temperature Selection by Juvenile Striped Bass in Laboratory and Field. Transactions of the American Fisheries Society 113:666–671

Cox, D.K. and C.C. Coutant. 1981. Growth dynamics of juvenile striped bass as functions of temperature and ration. Transactions of the American Fisheries Society 110: 226-238.

Kellogg, R.L. and J.J Gift. 1983. Relationship between optimum temperature for growth and preferred temperatures for the young of four fish species. Transactions of the American Fisheries Society 112:424-430.

Lutterschmidt, W.I. and V.H. Hutchison. 1997. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Canadian Journal of Zoology 75:1553-1560.

Van Den Avyle, M.J. and J.W. Evans. 1990. Temperature selection by striped bass in a Gulf of Mexico coastal river system. North American Journal of Fisheries Management 10:58-66.

Waddle, H.R., C.C. Coutant, and J.L. Wilson. 1980. Summer habitat selection by striped bass, Morone saxatilis, in Cherokee Reservoir, Tennessee, 1977. Oak Ridge National Laboratory, ORNL/TM-6927, Oak Ridge, Tennessee.

ATTACHMENT A
Detailed Summary of Chronic Thermal Tolerance Values for Striped Bass, Juvenile and Adult, Summer

Table A-1. Chronic Temperature Tolerances – Laboratory Optimal Growth Studies

Reference Age or Size		Acclim. Optimum Growth Temperature		Upper Optimum Growth Temperature		
Kelefelice	Age or Size	Temp. (°C)	Temp. (°C)	Comment	Temp. (°C)	Comment
Cox and				Optimum		Growth rate = 80% of optimum
	Juvenile	Unknown	25 - 26	growth	28	
Coutant (1981)				temperature		
Vallage and				Optimum		Growth rate = 75% of optimum
Kellogg and	Juvenile	Unknown	27 - 28.5	growth	31	_
Gift (1983)				temperature		

Table A-2. Chronic Temperature Tolerances – Laboratory Preference Studies

Reference Age or Size Temp.		Average Preference Temperature		Upper Preference Temperature		Final Preferendum		
Reference	Age or Size	Temp.	Temp. (°C)	Comment	Temp. (°C)	Comment	Temp. (°C)	Comment
Coutant et al. (1984)	Juvenile	22 – 24	22.1 – 26.7		24.1 – 28.3	Average + 1 standard deviation		
Kellogg and Gift (1983)		24	27		33	Upper limit of preference for individual fish		

Table A-3. Chronic Temperature Tolerances – Laboratory Upper Temperature Avoidance Studies

Reference	Age or Size	Acclim. Temp. (°C)	Temperature (°C)	Comment
			26.4	Average
Coutant et al. (1984)	Juvenile	unknown	28.3	Average + 1 standard
				deviation

Table A-4. Chronic Temperature Tolerances – Field Studies

Reference	Temperature (°C)	Comment	
	8 - 24	Temperature range for all fish for May-	
Bettoli (2005)	8 - 24	October	
	22.0	Upper temperature limit for 90% of fish	
	20 – 24	Preferred temperature range	
Coutant and Carroll (1980)	22	Final preferendum	
	25	Avoided high temperature	
Coutant et al. (1984)	14.6 – 28.2	Full range of temperature occupied by fish	
	21.6	Average temperature inhabited by tagged fish	
Van Den Avyle and Evans (1990)	21.0	May-October	
van Den Avyle and Evans (1990)	24	Temperature at which tagged fish would move	
	24	to cooler spring areas	
	14 – 31	Full range of temperature occupied by fish	
	16 – 25	Range of temperatures mostly occupied	
Woddle et al. (1000)	10 – 23	(average <u>+</u> standard deviation)	
Waddle et al. (1980)	18 – 22	Mean of temperatures occupied by individual	
	10 – 22	fish	
	21	Final preferendum	

Table A-5. Chronic Temperature Tolerances -Colorado

Reference	Temperature (°C)	Comments
Colorado WQCD (2007)	29.6	Recommended level as MWAT

ATTACHMENT B
Detailed Summary of Acute Thermal Tolerance Values for Striped Bass, Juvenile and Adult, Summer

Table B-1. Acute Temperature Tolerances – Laboratory Lethal Temperatures, UILT/UUILT

Reference	Size or Age	Acclim. Temp.	Test Duration	UILT		UUILT	
Reference		(°C)		Temp. (°C)	Comment	Temp. (°C)	Comment
		5		24.4			
		10		27.2			
	15	_	29.7				
Cook et al.	Juvenile s	16	3-d	28.5 - 29.7			
(2006)	20		31.1				
	23		30.6 - 31.2				
		26		31.8			
		30		33.9			

Table B-2. Acute Temperature Tolerances – Laboratory Lethal Temperatures, Critical Thermal Maximum

Reference	Size or Age	Acclim. Temp. (°C)	Rate	Temperature (°C)	Endpoint
				27.4	Loss of equilibrium
		5		28.1	Loss of righting response
				28.6	Onset of spasm
				29.5	Loss of equilibrium
		10		30.1	Loss of righting response
				30.6	Onset of spasm
				31.6	Loss of equilibrium
		15		32.2	Loss of righting response
Cook et al. (2006)	Juvenile		0.3°C/min	32.7	Onset of spasm
COOK et al. (2000)	Juveille	20	(18°C/hour)	33.7	Loss of equilibrium
				34.2	Loss of righting response
				34.7	Onset of spasm
				36.2	Loss of equilibrium
		26		36.7	Loss of righting response
				37.2	Onset of spasm
				37.9	Loss of equilibrium
		30		38.3	Loss of righting response
				38.8	Onset of spasm
Lutterschmidt and	Unknown	10	1.0°C/min	29.4	Loss of righting response
Hutchison (1997)	Ulikilowii	10	(60°C/hour)	31.6	Onset of spasm